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Multi-test gWoE and ITS framework

- From structured narrative and flow charts to decision
theory based

*Quantitative, transparent, consistent, objective

- Bayesian Network ITS as the probabilistic operational

framework

*Uncertainties,

*dependencies between pieces of information,
*heterogeneous information,

*hypotheses can be updated when new data arrive.

Jaworska, Aldenberg, Gabbert 2010, Reg Tox Pharm;
Jaworska & Hoffmann 2010; Altex;
Aldenberg &Jaworska 2010 gWoE Predictive Toxicology Ch 17



Hypothesis ( prior) X evidence ( likelihood) =
Revised hypothesis (posterior)
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How does the final answer look like ?
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Mechanism of Contact Sensitization
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BN ITS abstracted skin sensitization process embedded
Into a decision analytic tool

®
0.1006 .
._-—- 5.83%
o The structure of @
0.,0955 0.95685
5 68% the network 51.720p|  Ctot
B6.33% o 53.85%
mirrors the —
. 73.65%
process, is not data 303% Ag
KEC3 0 Vo
driven 7.48% Crree

DPRALys
DPRACys CD36



Data set of n=142 (124, 18)
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Value of Information (Vol)
driven Testing Strategy

« To identify optimal testing strategy BN ITS uses “One step look —
ahead hypothesis”. It amounts to computing the mutual information
MI(X, Y) for all possible observations X and choosing the one that
has the highest MI with the hypothesis variable Y.

« Mutual Information MI (X, Y)- "the amount of uncertainty in Y which is
removed by knowing X". MI(Y,X) = H(Y)-H(Y|X) where H (Y) Is
entropy of Y. Relative MI (MI(X,Y)/H(Y)) informs about % of
uncertainty in Y removed by X.



Learnings from BN ITS-1

* Asingle generic set of tests as in vivo

replacement strategy is unlikely to be the most
effective.

« Effective strategy depends on the initial
Information, and changes based on additional
Information. Thus it should be adaptive, flexible,
and Value of Information (Vol) driven.

Jaworska, Harol, Kern, Gerberick, Altex 2011 Integrating Non-Animal Test Information
into an Adaptive Testing Strategy — Skin Sensitization Proof of Concept Case
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Adaptive ITS

Analogue

information

Times
Cys test

OR CD 86

CD86 OR Cys test CD86 ANDR
tests (Cys, Lys)

BN ITS adapts to a generated in silico/ analogue hypothesis about LLNA

potency.
*Refinement by adding chemistry based rules ongoing

*Depending on the hypothesis, different in vitro tests are recommended as
confirmatory tests.

 Current data suggests use of R and CD86 simultaneously to test NS and S
hypothesis is not effective.



Flexible ITS

Many ways to get to the final decision
Many strategies with equivalent outcome BUT different cost

DPRA or DPRA and bC ( CDS6) DC ( CD86)

Ksens Ksens and R

Analogue
information

“in silico” ) In vitro + B data
Times | l hypothesis

[ Final hypothesis ]




Flexible ITS

performance with partial evidence
on test set ( n=18)

1 X X \4 \4 \4 58 100
2 X \4 X \4 \4 63 100
3 X \4 \4 X \4 63 100
4 X \4 \4 \4 X 69 100
5 X X \4 X X 63 100
6 X X X \4 \4 69 100
7 X \4 \4 \4 \4 69 100
3 \4 \4 \4 \4 \4 34 100




How can we use the ITS tool in
practice?

* Setting success criteria
— Performance related
— Features related ( like ability to explain)

* How does the BN prediction compare with our
“classical” SAR approach?

e 1 case study



Case study 2-Propenoic acid bis-ester
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DEREK Unsaturated Ester
TIMES (non sensitizer)
Toxtree Michael acceptor (MA) alert
Analogues Weak to moderate potencies
DPRA High reactivity

* SAR:

— DPRA suggests hypothesis of Skin sensitizer

— Due to high reactivity but MA alert, conservative
estimation of moderate sensitizer was made.



Case study: BN ITS
I N 0

DPRA ( Cys/Lys)
Cys/Lys/B 1 13 24 62
Cys/Lys/B/ MA 1 13 54 32
Times - M 80 7 9 4
All w/o MA 29 21 38 12
All/MA 29 51 8 12

BN ITS with all the same evidence allows to develop a hypothesis that the
chemical is a weak sensitizer. If we want to continue based on Vol CD86 will
be most useful:

CD86 <=30 mM 6 32 41 20
CD86 <=300 mM 5 68 25 1
CD86 > 300 mM 70 33 1 1




Summary

We formalized process of WoE into a gWoE and developed a
tool to run gWoE and ITS. Practical evaluation/deployment
are ongoing.

*Conflicting evidence

Different set of evidence

Bioavailability

«Can guide testing

We are developing chemistry based rules for a refined
Interpretation of both individual assays and in vivo potency



Thank you for your attention



